Pages

Transformer Taps, Bushings and Polarity


Transformer Taps


Most power transformers have taps on either primary or secondary windings to vary the number of turns and, thus, the output voltage. The percentage of voltage change, above or below normal, between different tap positions varies in different transformers. In oil-cooled transformers, tap leads are brought to a tap changer, located beneath the oil inside the tank, or brought to an oil-filled tap changer, externally located. Taps on dry-type transformers are brought to insulated terminal boards located inside the metal housing, accessible by removing a panel.
Some transformers taps can be changed under load, while other transformers must be de-energized. When it is necessary to change taps frequently to meet changing conditions, taps that can be changed under load are used. This is accomplished by means of a motor that may be controlled either manually or automatically. Automatic operation is achieved by changing taps to maintain constant voltage as system conditions change. A common range of adjustment is plus or minus 10%. At Reclamation powerplants, de-energized tap changers (DETC) are used and can only be changed with the transformer offline. A very few load tap changers (LTC) are used at Grand Coulee between the 500-kilovolt (kV) (volts x 1,000) and 220-kV switchyards. A bypass device is sometimes used across tap changers to ensure power flow in case of contact failure. This prevents failure of the transformer in case excessive voltage appears across faulty contacts.


Transformer Bushings


The two most common types of bushings used on transformers as main lead entrances are solid porcelain bushings on smaller transformers and oil-filled condenser bushings on larger transformers.
Solid porcelain bushings consist of high-grade porcelain cylinders that conductors pass through. Outside surfaces have a series of skirts to increase the leakage path distance to the grounded metal case. Highvoltage bushings are generally oil-filled condenser type. Condenser types have a central conductor wound with alternating layers of paper insulation and tin foil and filled with insulating oil. This results in a path from the conductor to the grounded tank, consisting of a series of condensers. The layers are designed to provide approximately equal voltage drops between each condenser layer.
Acceptance and routine maintenance tests most often used for checking the condition of bushings are Doble power factor tests. The power factor of a bushing in good condition will remain relatively stable throughout the service life. A good indication of insulation deterioration is a slowly rising power factor. The most common cause of failure is moisture entrance through the top bushing seal. This condition will be revealed before failure by routine Doble testing. If Doble testing is not performed regularly, explosive failure is the eventual result of a leaking bushing. This, many times, results in a catastrophic and expensive failure of the transformer as well.


Transformer Polarity


With power or distribution transformers, polarity is important only if the need arises to parallel transformers to gain additional capacity or to hook up three single-phase transformers to make a three-phase bank. The way the connections are made affects angular displacement, phase rotation, and direction of rotation of connected motors. Polarity is also important when hooking up current transformers for relay protection and metering. Transformer polarity depends on which direction coils are wound around the core (clockwise or counterclockwise) and how the leads are brought out. Transformers are sometimes marked at their terminals with polarity marks. Often, polarity marks are shown as white paint dots (for plus) or plus-minus marks on the transformer and symbols on the nameplate. These marks show the connections where the input and output voltages (and currents) have the same instantaneous polarity.
More often, transformer polarity is shown simply by the American National Standards Institute (ANSI) designations of the winding leads as H1, H2 and X1, X2. By ANSI standards, if you face the low-voltage side of a single-phase transformer (the side marked X1, X2), the H1 connection will always be on your far left.

See the single-phase diagrams in Picture 1. If the terminal marked X1 is also on your left, it is subtractive polarity. If the X1 terminal is on your right, it is additive polarity. Additive polarity is common for small distribution transformers. Large transformers, such as GSUs at powerplants, are generally subtractive polarity. It is also helpful to think of polarity marks in terms of current direction. At any instant when the current direction is into a polarity marked terminal of the primary winding, the current direction is out of the terminal with the same polarity mark in the secondary winding. It is the same as if there were a continuous circuit across the two windings.
Polarity is a convenient way of stating how leads are brought out. If you want to test for polarity, connect the transformer as shown on Picture 1. A transformer is said to have additive polarity if, when adjacent high and low voltage terminals are connected and a voltmeter placed across the other high- and low-voltage terminals, the voltmeter reads the sum (additive) of the high- and low-voltage windings. It is subtractive polarity if the voltmeter reads the difference (subtractive) between the voltages of the two windings. If this test is conducted, use the lowest AC voltage available to reduce potential hazards. An adjustable ac voltage source, such as a variac, is recommended to keep the test voltage low.



 

Picture 1: Polarity Illustrated

No comments:

Post a Comment